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Dual hybrid convolutional generative adversarial network for 
hyperspectral image classification
Cuiping Shia, Tianyu Zhanga, Diling Liaoa, Zhan Jina and Liguo Wangb

aCollege of Electronic and Communication Engineering, Qiqihar University, Qiqihar, China; bCollege of 
Information and Communication Engineering, Dalian Nationalities University, Dalian, China

ABSTRACT
Generative adversarial networks (GANs) have effectively promoted 
the development of hyperspectral image classification technology 
in generating samples. Many GAN-based models for hyperspectral 
image classification use deconvolution to generate fake samples, 
which will cause chequerboard artefacts and affect classification 
performance. Furthermore, the training of GANs still faces the 
problem of mode collapse. Aiming at the above problems, we 
proposed a dual hybrid convolutional generative adversarial net
work (DHCGAN) for hyperspectral image classification. Firstly, the 
combination of nearest neighbour upsampling and sub-pixel con
volution is employed in the generator, which avoids the overlap of 
convolution domain and effectively suppresses the chequerboard 
artefacts caused by deconvolution. Secondly, the traditional con
volution and dilated convolution are fused in the discriminator, 
which expands the receptive field without increasing parameters 
and achieves more effective feature extraction. In addition, some 
adaptive drop blocks are embedded into the generator and discri
minator to effectively alleviate the problem of mode collapse. 
Experiments were performed on four hyperspectral datasets 
(including three classical datasets – Indian Pines, University of 
Pavia and Houston, a new dataset – WHU-Hi-HanChuan). 
Experimental results show that the proposed method can provide 
a certain performance improvement over some competing meth
ods, such as the accuracy has been increased by more than 1% on 
the three classical datasets, and even got over 3% improvement on 
WHU_Hi_HanChaun dataset.
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1. Introduction

With the development of imaging technology, the development of hyperspectral sensors 
has become more and more mature, so the processing of hyperspectral images (HSIs) has 
received extensive attention from researches. HSI processing technology includes many 
aspects, such as classification, spectral unmixing (Shi and Wang 2014), super-resolution 
restoration (Jiang et al. 2020) and anomaly detection (Nasrabadi 2014). Classification is 
one of the most commonly used and critical techniques. HSIs have the characteristics of 
multiple bands, with hundreds of continuous and narrow spectral bands, covering the 

CONTACT Cuiping Shi shicuiping@qqhru.edu.com College of Electronic and Communication Engineering, 
Qiqihar University, No. 42, Wenhua Street, Jianhua District, Qiqihar 161000, Heilongjiang Province, China

INTERNATIONAL JOURNAL OF REMOTE SENSING 
2022, VOL. 43, NO. 14, 5452–5479 
https://doi.org/10.1080/01431161.2022.2135412

© 2022 Informa UK Limited, trading as Taylor & Francis Group 

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2022.2135412&domain=pdf&date_stamp=2022-10-14


entire range of visible to infrared spectral range, and containing rich spatial and spectral 
information. Therefore, they have been widely used in agricultural crop analysis (Gu et al. 
2017), urbanization analysis (Benediktsson, Palmason, and Sveinsson 2005), environmen
tal pollution monitoring (Arellano et al. 2015), military (Makki et al. 2017) and other fields.

Traditional machine learning classification methods usually include two separate steps, 
namely, effective feature extraction and classifier design. Due to the huge amount of HSI 
data, some dimensionality reduction methods have emerged. Their purpose is to convert 
the original high-dimensional attribute space into low-dimensional subspace data and 
still achieve the classification effect without dimensionality reduction. The existing dimen
sionality reduction methods of HSIs mainly include transformation-based methods and 
non-transformation-based methods. Transformation-based methods include principal 
component analysis (PCA) (Licciardi et al. 2012), wavelet transform (Bruce, Cliff, and Li 
2002). The dimensionality reduction methods based on non-transformation include band 
selection (Warner and Shank 1997), data source division, etc. Later, some spatial spectral 
feature extraction methods were proposed (Zhu et al. 2018; Liang et al. 2017; Fang et al. 
2018; He et al. 2019). Representative hyperspectral image classifiers include logistic 
regression (Khodadadzadeh et al. 2014), K-nearest neighbour (Cariou and Chehdi 2015), 
support vector machine (Melgani and Bruzzone 2004) and limit learning machine (Li et al. 
2015), etc. However, the classification effect of the above traditional machine learning 
methods is not satisfactory, and the extracted features are relatively limited.

Over the past decade, in fields such as computer vision and natural language proces
sing, deep learning has been shown to extract features with strong discriminative power 
(Ronneberger, Fischer, and Brox 2015; Wang, Li, and Ling 2018). At the same time, deep 
learning also shows great advantages in HSI classification tasks. For example, in (Chen 
et al. 2014), a stacked autoencoder for HSI classification was first proposed to obtain more 
advanced features. Later, variants of SAE (including Laplace SAE (Jia et al. 2015), etc.) had 
also been proposed one after another. Moreover, Chen et al. proposed a deep belief 
network model for HSI classification task to realize feature extraction and classification 
(Chen, Zhao, and Jia 2015). However, these two deep learning frameworks have the 
problem of over parameterization. Convolutional neural network (CNN) has the charac
teristics of local connection and parameter sharing, which can effectively alleviate this 
problem. In addition, many studies have proved that CNN performs well in HSI classifica
tion tasks with its powerful automatic feature extraction ability. Hu et al. proposed a one- 
dimensional CNN (1DCNN) for HSI classification (Hu et al. 2015). Li et al. (2017) proposed 
a new pixel pair method, which used 1DCNN to classify pixel pairs. Cao et al. (2018) used 
Markov random field and CNN to learn feature distribution, which can make better use of 
spatial information. The proposal of the spectral spatial residual network enabled the 
model to continuously learn the distinguishing features in spectral and spatial, and the 
classification performance was further improved (Zhong et al. 2018). Then, Zhang, Li, and 
Du (2018) proposed a new region-based model of learning context interaction informa
tion. The deformable idea was introduced, deformable down sampling and deformable 
convolution were used to achieve effective feature extraction (Zhu et al. 2018). Besides, 
Jiang et al. (2021) proposed a full convolution spatial propagation network to enhance the 
modelling of context spatial information.

Except CNN, generative adversarial network (GAN) has also become a widely con
cerned deep learning model in recent years after it was first proposed (Goodfellow et al. 
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2014). Because of its ability to generate high-quality samples, it has attracted great 
attention of many researchers. GAN consists of two sub-networks, the generator and 
the discriminator. The two sub-networks are trained against each other, not only ensures 
that the generator provides high-quality samples, but also enables the discriminator to 
obtain higher discrimination ability. This process also makes its training optimization have 
some challenges. In the early days, conditional GAN (Mirza and Osindero 2014) could 
guide the generator to synthesize fake samples of the target. Laplace GAN (Denton, 
Chintala, and Fergus et al. 2015) utilized the GAN framework to train individual CNN, 
but its calculation is too complicated. Radford et al. proposed deep convolution GAN 
(Radford, Metz, and Chintala 2015), successfully integrated CNN into GAN for the first time, 
and introduced some optimization methods to help GAN stabilize training. There is also 
a semi-supervised GAN, which uses a small amount of labelled data and a large amount of 
unlabelled data for GAN training to realize the classification of unlabelled data. 
Afterwards, some GAN models that can make the training more stable have emerged, 
such as Wasserstein GAN (Martin, Chintala, and Bottou 2017), progressive growth GAN 
(Karras et al. 2018), etc.

Due to the high cost of acquiring HSI data, in the case of small samples, GAN can 
achieve data augmentation by generating samples to effectively alleviate this problem. In 
the past three years, many researchers have studied GAN adversarial training for HSI 
classification. For example, Zhan et al. (2018) proposed a one dimensional SGAN frame
work for HSI classification. And the three dimensional GAN is proposed to combine spatial 
information and use softmax to assist classification in the discriminator (Zhu et al. 2018). 
Zhong et al. (2020) proposed a GAN framework combined with conditional random field 
to reconstruct the real HSI data distribution to alleviate the shortage of training samples. 
A one-dimensional triple GAN and integrated capsule network was proposed for sample 
generation (Wang et al. 2019). In addition, Feng et al. (2019) proposed a new multi-class 
spatial spectral GAN method to complete adversarial training. Recently, Hang et al. (2021) 
proposed multi-task GAN, designed a generator that undertakes two tasks for reconstruc
tion of the HSI cube and final classification. Zhang et al. (2021) put forward a combined 
GAN by using the ideas of (Martin, Chintala, and Bottou 2017) and (Karras et al. 2018) for 
HSI classification. A method of embedding adaptive drop blocks into GAN (ADGAN) was 
proposed to alleviate the problem of mode collapse during training (Wang et al. 2021). 
Roy et al. (2022) also used GAN to oversample the minority classes in HSI to alleviate the 
class imbalance problem in HSI datasets.

However, for many GAN-based HSI classification methods, the network layers of the 
generator use deconvolution to generate fake samples, but if the parameters of decon
volution are not set properly, it will face chequerboard artefacts. This effect is particularly 
obvious at the darker borders, which will have a certain impact on the classification 
performance. Sun et al. introduced sub-pixel convolution into the generator to achieve 
compressive sensing reconstruction (Sun et al. 2020). Inspired by this, and in order to 
solve the problem of chequerboard artefacts and mode collapse, a new GAN model-dual 
hybrid convolution GAN (DHCGAN) is proposed in this paper. In the generator of 
DHCGAN, the combination of nearest neighbour upsampling and sub-pixel convolution 
is employed to generate high-quality fake samples as one input of the discriminator. Due 
to the slow convergence speed of GAN, in order to avoid increasing the computational 
complexity by setting too many network layers, the dilated convolution is introduced into 
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the discriminator, which integrates the traditional convolution and dilated convolution to 
achieve more effective feature extraction. Furthermore, the adaptive drop layers and the 
batch normalization layers were embedded into the generator and discriminator to 
achieve GAN optimization. It is worth noting that the proposed discriminator has only 
one output, which can avoid the contradiction between classification and discrimination. 
In conclusion, the contributions of this paper can be summarized as the following three 
points.

(1) To our knowledge, we are the first to use this method to provide ideas for sample 
generation from hyperspectral images, which is a way to use mixed sub-pixel 
convolutions as upsampling layers on the generator of a GAN.

(2) In the generator, the nearest neighbour upsampling and sub-pixel convolution are 
effectively combined, which not only suppresses chequerboard artefacts caused by 
deconvolution, but also generates high-quality samples to alleviate the problem of 
small sample size of HSI data.

(3) For the discriminator, we fuse the dilated convolution with the traditional convolu
tion, and set different dilation rates for different convolution layers. In generally, 
the dilation rate increases, which can expand the receptive field and enhance the 
discriminative ability of the discriminator.

The rest of this paper is arranged as follows. Section 2 briefly reviews the traditional GAN 
and auxiliary classifier GAN. Section 3 introduces the proposed DHCGAN method in detail. 
The experimental results and analysis are given in Section 4. Section 5 draws some 
conclusions.

2. Related works

2.1. Generative adversarial network

GAN is a training image synthesis model based on the idea of game theory. GAN contains 
two network models, one is generator G and the other is discriminator D. The basic 
framework of GAN is shown in Figure 1. As shown in Figure 1, the generator G receives 
a random noise z, which is a n-dimensional vector, and takes the output data Xfake ¼ GðzÞ
with the same distribution pdata as the real data. The input of discriminator D are real data 
Xreal and false data Xfake generated by G, and the output is a probability value 
PðSjXÞ ¼ DðXÞ. In the training process of GAN, the generator G and discriminator 
D have contradictory goals.

The goal of G is to learn the distribution of real data, reduce the gap between real data 
Xreal and generated data Xfake, and try to make D discrimination error. The goal of D is to 
distinguish real data from generated data as accurately as possible. The optimization 
process of GAN is to find the Nash equilibrium between G and D, which can be regarded 
as a minimax game problem. The objective function can be defined as 

minG maxDVðD;GÞ ¼ EXreal,pdata ½log DðXrealÞ� þ EXfake,pG ½logð1 � DðXfakeÞÞ� (1) 
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Where Vð�Þ and E represent the observed value and the expected operator respectively. 
In the iteration, first, when G is fixed, the discriminator D is trained and optimized k times 
to maximize its log-likelihood, and the loss function LD can be represented as 

LD ¼ E½log PðS ¼ realjXrealÞ� þ E½log PðS ¼ fakejXfakeÞ� (2) 

Then, when D is fixed, the generator G realizes optimization by minimization LG, and 
the loss function LG can be represented as 

LG ¼ E½log PðS ¼ fakejXfakeÞ� (3) 

Such confrontation training makes G and D promote each other. After multiple alter
nating iterative training, the global optimal performance is achieved, that is, the generator 
G learns the distribution of real data, and the ability of discriminator D to distinguish real 
data from generated data has also been well improved.

2.2. Auxiliary classifier generative adversarial network

Both conditional GAN (CGAN) and auxiliary classifier GAN (ACGAN) control the generated 
image by introducing additional conditions. ACGAN is a good proof that adding more 
structures and a special cost function to the latent space of GAN can obtain higher quality 
samples (Odena, Olah, and Shlens 2017). The network layers of CGAN are the full 
connection layer, and the network layers of ACGAN are the convolution layer. The 
convolution layer can better extract the features of the image, and the generated 
image edges are more continuous and more realistic. Moreover, the discriminator of 
ACGAN can output the probability of multi-class labels, which is more suitable for multi- 
class applications such as HSIs. In ACGAN, each generated sample is assigned an asso
ciated class label c : pc, class label c and random noise z are used as the input of generator 
G and output as labelled false data Xfake ¼ Gðc; zÞ. Similarly to GAN, the input of discrimi
nator D is the real data with corresponding labels and the fake data with corresponding 
labels generated by G, and the output is two items: one is the probability distribution 

Noise 
Z

Real data

D
Fake or Real

Generator

Discriminator

G

Figure 1. The basic framework of GAN.
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PðS Xj Þ to distinguish real and fake data, and the other is the probability distribution 
PðC Xj Þ ¼ DðXÞ to classify the input according to class label c. The objective function of 
ACGAN has two parts: the log-likelihood of the correct source LS and the log-likelihood of 
the correct class LC . The calculation equations of LS and LC can be represented as 

LS ¼ E½log PðS ¼ realjXrealÞ� þ E½log PðS ¼ fakejXfakeÞ� (4) 

LC ¼ E½log PðC ¼ cjXrealÞ� þ E½log PðC ¼ cjXfakeÞ� (5) 

Among them, maximizing LS þ LC through alternating iterative training can realize the 
optimization of D, and maximizing LC � LS can realize the optimization of G. This paper 
improved the idea of ACGAN, and proposed the DHCGAN method, and explored the 
performance of the proposed method in the application of hyperspectral classification.

3. Methodology

3.1. The overall framework of the proposed DHCGAN model

The overall framework of the proposed DHCGAN method is shown in Figure 2. Let S ¼
fX;Yg be the input of the model, where X 2 <H�W�B is a three-dimensional HSI cube with 
height H, width W, spectral channel B. And Y is the label vector of HSI data. Because there 
is a lot of redundancy between the spectral bands of HSI, it is difficult to train a robust 
generator. Therefore, firstly, PCA is used to concentrate the spectral bands of the input HSI 
to the first three components, thereby reducing the computational complexity of data 
processing and contribute to the training and optimization of GAN. The dimension 
reduced data is randomly divided into blocks, and the three-dimensional cube composed 
of the target pixel and its spatial neighbourhood pixels is taken as a new sample set 

Figure 2. The overall framework of the proposed DHCGAN method.
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P 2 <h�w�b, where H and W are set to the same value, representing the height and width 
of the cube respectively, and B is the number of spectral components obtained by PCA. 
Next, P is randomly divided into training set xtrain and test set xtest according to a certain 
proportion.

Generator g and discriminator D are trained alternately to promote and optimize each 
other. In one iteration, the generator G is trained and optimized once, while the discri
minator D is trained and optimized k times. Under the condition of fixed the generator G, 
the real training sample set xtrain and some fake samples Gðc; zÞ are input into discrimi
nator D to obtain an output – specific category or fake label. After several iterations, the 
optimized G and D are obtained. Finally, the test set is input into the optimized discrimi
nator D to get the final classification prediction result.

3.2. Generator with hybrid convolution

Most hyperspectral image classification methods based on GAN model take deconvolu
tion as the main network layer of the generator, but if the parameters are not configured 
properly, the generated samples are easy to appear obvious chequerboard artefacts. This 
paper explored the mitigation of chequerboard artefacts in HSI classification task by the 
combination of nearest neighbour upsampling and sub-pixel convolution. Firstly, the 
input noise of G is 100� 1� 1, and then the input is converted to 512� 4� 4 through 
a nearest neighbour upsampling layer and a conventional two-dimensional convolution 
layer, where the parameter upscale of the nearest neighbour upsampling is set to 4. Then, 
four combination functions CFð�Þ are used to further improve the resolution of the tensor 
obtained above. Specifically, CFð�Þ is a combined function of sub-pixel convolution, batch 
normalization (BN) (Ioffe and Szegedy 2015) and activation function Exponential Linear 
Units (ELU) (Clevert, Unterthiner, and Hochreiter 2016), and the resulting high-resolution 
output is 

Fout ¼ CFðxlÞ ¼ σ½BNα;βSubPixelðxlÞ� (6) 

Where, xl is the input tensor of the lth layer, σ represents the ELU activation function 
operation, α and β represent the trainable parameters of BN operation respectively, and 
SubPixelð�Þ is the sub-pixel convolution operation. If the input tensor size is ½n; In C; h;w�
and the parameter of sub-pixel convolution is r1, the output size through sub-pixel 
convolution operation is ½n; In C

r1
2 ; h� r1;w � r1�, where n represents the batch size and 

In C is the input channels. The parameter settings of each layer of generator G are shown 
in Table 1. In particular, the adaptive drop layer is set after every two sub-pixel convolu
tion and used twice. The principle of adaptive drop is elaborated in Section 3.4. The final 
output size of generator G is 3� 64� 64.

3.3. Discriminator with hybrid convolution

The dilated convolution is introduced into the discriminator to increase the receptive field 
of the convolution, so as to improve the discrimination ability of the discriminator. The 
implementation of discriminator D is listed in Table 2. As shown in Table 2, the discrimi
nator consists of seven layers, including five convolution layers, one adaptive drop layer 
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and one linear layer. The convolution layer has four parameters: convolution kernel size, 
stride, dilation rate and padding. Set the input feature map size to ½n; In C; h;w� and the 
convolution kernel size to ½N; FH; FW�, where N represents the number of convolution 
kernels, the stride is s, the padding is p, and the dilation rate is r, which represents the 
interval of convolution kernels. When r ¼ 1, it is standard convolution; and when r > 1, it is 
dilated convolution, and the convolution kernel size of dilated convolution is ½N;DH;DW�, 
which can be expressed as

DH ¼ r � ðFH � 1Þ þ 1 (7) 

DW ¼ r � ðFW � 1Þ þ 1 (8) 

The size of output feature map is 

OH ¼
hþ2p � ½r � ðFH � 1Þ þ 1�

s
þ 1 (9) 

OW ¼
w þ 2p � ½r � ðFW � 1Þ þ 1�

s
þ 1 (10) 

If multiple identical dilated convolutions are superimposed, a large number of holes will 
appear, which will lose the continuity and integrity between data and is not conducive to 
efficient learning. Therefore, we fuse the dilated convolution with the traditional convolu
tion, that is, for a group of dilated convolutions in discriminator D, different layers set 
different dilation rates (the first four layers are 1,2,3,4 respectively), and the dilation rate 
increases gradually. This not only ensures that the last layer has a larger receptive field, 
but also avoids a large loss of local information.

Table 1. The implementation details of generator G.
Generator G

Layer Type K_Size Upscale/r1 Stride BN? Activation

Upsampling – 4 – no –
Conv2d 4×4×512 – 2 yes ELU
Subpixelconv – 2 1/2 yes ELU
Subpixelconv – 2 1/2 yes ELU
Adaptivedrop – – – – –
Subpixelconv – 2 1/2 yes ELU
Subpixelconv – 2 1/2 yes ELU
Adaptivedrop – – – – –
Conv2d 1×1×3 – 1 no tanh

Table 2. The implementation details of discriminator D.
Discriminator D

Layer Type K_Size Stride Dilation rate Padding? BN?

Conv2d 4×4×64 2 1 yes no
Conv2d 4×4×128 2 2 yes yes
Conv2d 4×4×256 2 3 yes yes
Conv2d 4×4×512 2 4 yes yes
Adaptivedrop – – – – –
Conv2d 4×4×128 1 1 no no
linear 1×128 – – – –
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3.4. Adaptive drop block

As a deep neural network, GAN may be over fitted due to excessive parameterization 
during iterative training optimization, and will also face the problem of mode collapse of 
the generator. Therefore, BN and an adaptive drop layer are used as regularization 
methods to alleviate the above problems in this paper. BN has been widely used in 
deep neural network training. It uses the mean and standard deviation in a mini-batch to 
continuously adjust the intermediate output of the neural network, so that the value of 
the intermediate output of the whole neural network in each layer is more stable.

In particular, the adaptive drop method is a structured regularization method with the 
thought of attention. The schematic figure of dropout (Srivastava et al. 2014) operation is 
shown in Figure 3, and the schematic figure of adaptive drop method is shown in Figure 3. 
Among them, the area with valid information is marked with blue square, and the drop 
operation is marked with black circle. As can be seen from Figure 3, the dropout operation 
randomly drops pixels with a certain probability in all regions, obviously without using 
spatial infor mation. Before performing the adaptive drop operation, the current feature 
map DðtÞ is first normalized to obtain the input feature map AðtÞ. Secondly, a set of pixels 
of each feature map is sampled using Bernoulli distribution (the yellow circles in Figure 3 
are marked as the sampled elements). For the position Mi;j of each element, create 
a spatial block with size block size� block size centred on Mi;j . Then the kth percentile 
element is dropped, the number of features dropped are controlled by γ, and the 
remaining elements are retained and set to 1. In this way, an adaptive mask with irregular 
shape is formed. The parameter can be calculated as

γ¼
1 � keep prob

block size2

sizefeature map
2

sizefeature map � block sizeþ 1
� �2 (11) 

Where, keep prob is the same as that in dropout operation, which is set between 0.75 and 
0.95, and sizefeature map represents the size of the feature map for performing the adaptive 
drop operation.

Finally, apply the resulting adaptive mask, the output is 

Aðtþ1Þ ¼ At � countðMÞ=count onesðMÞ (12) 

(a)  (b)   (c)

Figure 3. The schematic of (a) dropout; (b)(c) adaptive drop.
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Where, countðMÞ indicates the number of elements in the mask, and count onesðMÞ
indicates that the number of elements in the mask is 1.

3.5. Training and optimization of DHCGAN

As mentioned above, the training between generator and discriminator is performed as 
a two-player minimax game, which can be represented as 

min
G

max
D

VðD;GÞ ¼ Ex,pdataðxÞ½log DðxÞ� þ Ez,pGðzÞ½logð1 � DðGðzÞÞÞ� (13) 

The goal of discriminator D is to maximize Equation (12) , while the goal of the 
generator is to fool discriminator, that is, to minimize Equation (12). Obviously, when 
pGðZÞ ¼ pdataðxÞ, G is optimal. The procedure of the proposed DHCGAN method is shown 
in Algorithm 1. 

Algorithm The procedure of the proposed DHCGAN method

Input: Training sample xtrain and test sample xtest , one hot label c of training sample, batch size n, number E of 
training epochs, noise dimension d, update optimization times k of discriminator 

1 Initialization: All weight matrices and offsets for G and D 
2 for E training iterations do 
3 for k times do 
4 Input the training sample xtrain with three spectral components to D to complete the training of real samples; 
5 Randomly generated d-dimensional noisez; 
6 Generate fake samples Gðc; zÞ with one hot labels by generator G with hybrid convolution; 
7 Input the fake sample to D to obtain the classification result; 
8 Update the parameters of D by maximizing VðD;GÞ by Equation (12); 
9 end 
10 Input random noise z into G to generate fake samples Gðc; zÞ; 
11 Update the parameters of G by minimizing VðD; GÞ by Equation (12); 
12 end 

Output: Final specific category c ¼ fcig
n
i¼1 or false label of test sample xtest

4. Experimental results and analysis

4.1. Hyperspectral data sets

1) Indian Pines: The Indian Pine dataset was obtained from the Airborne Visible Infrared 
Imaging Spectrometer sensor in northwest Indiana. Figure 4 shows the pseudocolor and 
the corresponding ground truth image of the Indian Pines dataset. The spatial resolution is 20  
m per pixel and the spectral coverage is 0.4   2.5 µm. The data size is 145 × 145. After 
eliminating the 20 bands (include 104–108, 150–163 and 200) that cannot be reflected by 
water, the remaining 200 effective bands are taken as the research object. There are 16 land 
cover categories.

2) University of Pavia: The University of Pavia dataset was collected by Reflective Optics 
System Imaging Spectrometer sensors. The spectral coverage range is 0.43   0.86 µm, with 
a total of 115 bands, and the spatial resolution is 1.3 m. The data size is 610 × 340. After 
removing the noise influence band, there are 103 effective bands left for research, with 
a total of 9 kinds of crops. Figure 5 shows the pseudocolor and the corresponding ground 
truth image of the University of Pavia dataset.
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3) WHU-Hi-HanChuan: The WHU-Hi-HanChuan dataset was acquired on 17 June 2016, 
in Hanchuan, Hubei province, China, with an 17-mm focal length Headwall Nano- 
Hyperspec imaging sensor equipped on a Leica Aibot X6 Unmanned Aerial Vehicle 
(UAV) V1 platform. The image size is 1217 × 303, there are 274 bands in the range of 
400–1000 nm, and the spatial resolution is about 0.109 m/pixel. There are 16 types of land 
cover. Figure 6 shows the pseudocolor and the corresponding ground truth image of 
WHU-Hi-HanChuan dataset.

Alfalfa Corn-notill Corn-mintill

Corn Grass-pasture Grass-trees

Grass-pasture-mowed Hay-windrowed

Soybean-clean Wheat Woods

Building-Grass-Trees-Drives Stone-Steel-Towers

Oats Soybean-notill Soybean-mintill

Figure 4. The pseudocolor and the corresponding ground truth image of the Indian Pines dataset.

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shaows

Figure 5. The pseudocolor and the corresponding ground truth image of the University of Pavia 
dataset.
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4) Houston: This dataset was collected by the NSF-funded Center for Airborne Laser 
Mapping over the University of Houston campus and the neighbouring urban area. The 
size of the scene is 349 × 1905 × 144 with a spatial resolution 2.5 m/pixel and spectral 
coverage ranging from 0.38 to 1.05 μm. Fifteen land-cover classes were contained. 
Figure 7 shows the pseudocolor and the corresponding ground truth image of Houston 
dataset.

4.2. Evaluation index and parameter setting

In this paper, three commonly used quantitative measurement methods, including overall 
classification accuracy (OA), average classification accuracy (AA), and statistical kappa 
coefficient (kappa), are used to evaluate the performance of the proposed DHCGAN. 
The proportion of correctly classified samples in the total number of test samples is 
denoted by OA. The average of classification accuracy was determined as AA. Kappa 
represents the consistency between the classification map and the ground truth map, and 
the lower its value, the worse the classification effect. In the experiment, the batch size of 
each dataset is set to 200, and the input spatial window size is 27 × 27. In addition, the 
weight initialization of the proposed DHCGAN is random. Adam is used to optimize the 
parameters of the model. The initial learning rate is set to 0.0002, and the input random 
noise vector of the generator is set to 100 dimensions. All experimental results were 
obtained by independently running more than 20 times. Tables 3–6 show the number of 

Strawberry
Cowpea
Soybean
Sorghum
Water spinach
Watermelon
Greens
Trees
Grass
Red roof
Gray roof
Plastic
Bare soil
Road
Bright object
Water

Figure 6. The pseudocolor and the corresponding ground truth image of the WHU-Hi-HanChuan 
dataset.

Healthy grass
Stressed grass
Synthetic grass
Trees
Soil
Water
Residential
Commercial
Road
Highway
Railway
Parking Lot 1
Parking Lot 2
Tennis Court
Running Track

Figure 7. The pseudocolor and the corresponding ground truth image of the Houston dataset.
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training and test samples per class of the proposed DHCGAN on Indian pines, University of 
Pavia, WHU-Hi-HanChuan and Houston datasets. The computer device used for the 
experiment consists of an Intel i9-9900k processor with 128 GB of memory and NVIDIA 
GeForce RTX 2080 Ti GPU.

4.3. Classification results and analysis

To verify the effectiveness of the proposed DHCGAN, this paper makes comparative 
experiments with some state-of-the-art classification methods (including random forest 
(RF) (Ham et al. 2005), support vector machine (SVM) with radial basis function, multilayer 
perceptron (MLP) (Collobert and Bengio 2004), three-dimensional CNN (3DCNN) (Chen 
et al. 2016), pyramidal residual networks (PyResNet) (Paoletti et al. 2019), ADGAN, 
SpectralFormer (Hong et al. 2022), graph convolutional networks (GCN) (Hong et al. 
2021)). Both RF and SVM belong to traditional machine learning methods, and MLP is 
a feedforward neural network with two full connection layers. 3DCNN and PyResNet 

Table 3. Number of training and test samples per class in the Indian pines 
dataset.

Class                           Numbers of samples

No Name Train Test

1 Alfafa 5 41
2 Corn-notill 139 1289
3 Corn-mintill 81 749
4 Corn 23 214
5 Grass-pasture 47 436
6 Grass-trees 71 659
7 Grass-pasture-mowed 3 25
8 Hay-windrowed 46 432
9 Oats 2 18
10 Soybean-notill 95 877
11 Soybean-mintill 240 2215
12 Soybean-clean 58 535
13 Wheat 20 185
14 Woods 123 1142
15 Building-grass-trees-drives 38 348
16 Stone-steal-towers 9 84

Total                              1000 9249

Table 4. Number of training and test samples per class in the 
University of Pavia dataset.

Class                       Numbers of samples

No Name Train Test

1 Asphalt 155 6476
2 Meadows 436 18213
3 Gravel 49 2050
4 Trees 72 2992
5 Painted metal sheets 31 1314
6 Bare Soil 118 4911
7 Bitumen 31 1299
8 Self-Blocking Bricks 86 3596
9 Shadows 22 925

Total                       1000 41776
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belong to the CNN model of deep learning, while ADGAN and DHCGAN belong to the 
GAN-based classification algorithm in the deep learning framework. Obviously 
SpectralFormer and GCN are based on Transformer and graph convolutional network 
frameworks, respectively. In the RF method, the maximum features number of split nodes 
is set to 20, and 200 trees are constructed for each dataset before taking the average 
prediction. For CNN models (3DCNN and PyResNet), the input image patch size is set to 
11 × 11, at which point their classification performance is the best. The input image patch 
size of ADGAN is set to the size for best performance, which is 27 × 27. PyResNet, ADGAN, 
SpectralFormer, GCN and the proposed DHCGAN are implemented under the framework 
of Pytorch, and the other four algorithms are experimented in the framework of Keras. The 

Table 5. Number of training and test samples per class in the 
WHU-Hi-HanChuan dataset.

Class                  Numbers of samples

No Name Train Test

1 Strawberry 69 44710
2 Cowpea 35 22728
3 Soybean 15 10262
4 Sorghum 9 5328
5 Water spinach 2 1175
6 Watermelon 7 4508
7 Greens 9 5878
8 Trees 28 17953
9 Grass 15 9444
10 Red roof 17 10491
11 Grey roof 27 16886
12 Plastic 6 3654
13 Bare soil 14 9091
14 Road 28 18535
15 Bright object 2 1111
16 Water 117 75376

Total             400 257130

Table 6. Number of training and test samples per class in the 
Houston dataset.

Class                   Numbers of samples

No Name Train Test

1 Healthy grass 65 1186
2 Stressed grass 65 1189
3 Synthetic grass 40 657
4 Trees 65 1179
5 Soil 65 1177
6 Water 20 305
7 Residential 66 1202
8 Commercial 65 1179
9 Road 65 1187
10 Highway 64 1163
11 Railway 64 1171
12 Parking Lot 1 64 1169
13 Parking Lot 2 30 439
14 Tennis Court 25 403
15 Running Track 38 623

Total              800 14229
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classification results of the seven methods on the four datasets are shown in Table 7– 
Table 10. The best results are marked in bold.

(1) Classification results on the Indian pines dataset: The classification results of the 
seven algorithms on the Indian pines dataset are shown in Table 8. 500 samples of 
the Indian pines dataset were randomly selected as training samples and the rest as 
test samples. It can be seen that the proposed DHCGAN achieved the highest 
values in OA, AA and kappa, which are 96.78%, 96.07% and 96.40% respectively. 
Since sophisticated methods based on deep learning (3DCNN, PyResNet, ADGAN, 
SpectralFormer, GCN and DHCGAN) have more powerful feature extraction 

Table 7. Classification results of different methods on Indian pines dataset.
Color Class RF SVM MLP 3DCNN PyResNet ADGAN SpectralFormer GCN DHCGAN

1 19.00 0.00 35.17 28.89 83.13 96.30 97.41 94.44 98.83

2 54.90 70.44 62.79 81.16 92.75 96.35 85.33 87.94 96.40

3 46.57 87.48 68.52 88.7 87.02 95.52 80.24 86.98 96.81

4 16.00 11.69 52.79 70.43 83.48 96.89 95.23 79.24 96.81

5 69.28 86.26 86.19 91.68 88.05 93.58 94.37 96.23 97.00

6 74.07 90.47 85.50 95.34 93.42 94.65 90.61 97.30 99.80

7 40.05 10.40 75.54 35.85 94.24 94.03 97.11 85.71 94.92

8 86.25 93.19 89.32 97.48 100.0 100.0 95.23 97.09 100.0

9 35.10 0.00 59.87 49.37 76.11 82.73 85.89 77.77 89.84

10 47.45 67.87 68.69 84.41 91.98 93.07 87.17 9449 95.22

11 68.12 88.98 69.97 89.04 93.92 94.79 87.43 88.96 94.33

12 29.66 58.79 61.25 60.26 89.84 96.27 91.07 87.32 98.52

13 72.82 97.43 87.18 80.40 92.85 99.98 96.64 97.14 100.0

14 87.37 92.34 89.37 95.96 98.31 97.51 95.87 95.32 98.91

15 26.43 57.22 69.36 83.69 77.83 95.69 89.05 82.96 92.75

16 58.76 94.90 98.61 95.56 91.45. 98.08 95.42 97.72 98.90

OA(%) 69.04 75.45 73.74 86.63 92.80 95.81 88.30 90.07 96.78

AA(%) 51.99 63.31 72.50 76.64 89.65 95.40 91.51 89.79 96.07

Kappa(%) 63.76 71.87 69.79 84.71 91.92 94.81 86.60 88.67 96.40

Table 8. Classification results of different methods on University of Pavia dataset.
Color Class RF SVM MLP 3DCNN PyResNet ADGAN SpectralFormer GCN DHCGAN

1 79.59 88.56 88.74 87.86 95.25 92.59 88.88 93.99 95.94

2 97.55 97.12 98.18 96.07 99.40 98.03 96.80 96.22 98.44

3 64.71 81.19 62.27 85.60 82.64 85.01 69.09 86.45 86.60

4 84.28 86.58 99.07 98.90 85.29 97.18 98.91 97.64 94.36

5 97.85 98.39 99.61 98.82 95.44 100.0 99.32 99.91 100.0

6 56.60 85.63 67.01 95.67 94.40 98.01 95.63 93.04 100.0

7 60.54 85.81 83.28 93.14 96.53 96.76 73.72 92.35 97.21

8 83.25 83.92 84.33 78.40 94.81 93.33 84.16 86.28 90.70

9 99.12 99.12 98.78 97.37 77.48 92.11 98.49 100.0 99.93

OA(%) 86.11 91.49 88.87 92.47 95.20 95.10 92.39 94.35 96.55

AA(%) 80.39 89.59 86.81 92.43 91.25 94.78 89.44 93.99 95.91

Kappa(%) 81.17 88.68 85.38 89.94 93.89 95.09 89.88 92.48 96.24
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abilities, their OA values are superior to traditional machine learning methods (RF 
and SVM). The network structure of MLP is too simple, so the OA value is lower than 
that of SVM and other deep learning models. Because SpectralFormer only utilizes 
spectral information, its accuracy is lower than other algorithms that combine 
spatial information. For PyResNet, which is also a CNN model, its ability to extract 
spectral spatial features is stronger than 3DCNN, resulting in three performance 
indicators that are higher than those of 3DCNN. GCN obtains complex structural 
information based on the spectral structure of the graph, so the classification 
performance is better than that of 3DCNN and other algorithms that only utilize 
spectral information. The classification algorithm based on GAN can effectively 
alleviate the dilemma of insufficient samples of hyperspectral datasets to 
a certain extent, so the OA values of ADGAN and DHCGAN are higher than those 
of other methods. Because the proposed DHCGAN algorithm effectively combines 
two types of convolution in both generator and discriminator, it not only alleviates 
chequerboard artefacts caused by deconvolution, but also improves the feature 
discrimination ability of discriminator, so the three evaluation values are all opti
mal. Figure 8 are the visual classification maps of different competitive methods on 
Indian pines dataset. RF, SVM, MLP and 3DCNN presented high misclassification 
rate on many classes, especially Alfafa, Corn, Oats, Soybean-mintil and Soybean- 
clean.Moreover, the boundary of the classification maps of these methods is more 
blurred and the influence of noise is obvious. In contrast, PyResNet, ADGAN and 
DHCGAN significantly improve the classification quality of each class. Compared 
with PyResNet, the two GAN models classify more clearly boundaries of each class 
and have fewer noise points. The proposed DHCGAN achieved the highest accuracy 
in 13 classes, and the classification effect is particularly significant on the Soybean- 
notill and Soybean-mintill classes with more samples in the middle region.

(2) Classification results on the University of Pavia dataset: In this paper, 1000 samples 
are randomly selected from the University of Pavia as the training set, and the other 
samples are used for testing. Table 8 shows the OA, AA and kappa values of 

Figure 8. Visual classification maps of different methods on Indian pines dataset (a) the ground truth, 
(b) RF, (c) SVM, (d) MLP, (e) 3DCNN, (f) PyResnet, (g) ADGAN, (h) SpectralFormer, (i) GCN, (j) DHCGAN.
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different competitive methods on the University of Pavia dataset and the classifica
tion accuracy of each class. As shown in Table 8, the proposed DHCGAN achieved 
the highest values in OA, AA and kappa. Among them, the OA values of DHCGAN 
are 10.44%, 5.06%, 7.68%, 4.08%, 1.35%, 4.16%, 2.2% and 1.45% higher than those 
of RF, SVM, MLP, 3DCNN, PyResNet, SpectralFormer, GCN and ADGAN respectively. 
The classification effect of more complex deep learning classification methods 
(including 3DCNN, PyResNet, ADGAN and DHCGAN) is significantly better than 
other methods, especially Gravel, Bare Soil and Bitumen. Compared with 3DCNN, 
the OA value of PyResNet, which is more efficient for feature extraction, is more 
than 2% higher than 3DCNN. For GAN models, the proposed DHCGAN not only 
generates high-quality samples, but also extracts features more effectively, so its 
OA value is higher than PyResNet and ADGAN. The visual classification results 
corresponding to different competitive methods are shown in Figure 9(b–j). 
Compared to other methods, DHCGAN achieved the best accuracy on six classes 
(9 classes in total) of the University of Pavia dataset, and even achieved 100% 
classification results on Painted metal sheets and Bare Soil.

3) Classification results on the WHU-Hi-HanChuan dataset: Due to the spatial resolution 
of WHU-Hi-HanChuan data set is very high, the difference between samples of several 
categories (such as Strawberry, Cowpea, Soybean and Watermelon) is small. Moreover, we 

(a)  (b)         (c)     (d) (e)

(f)   (g)      (h)     (i) (j)

Figure 9. Visual classification maps of different methods on University of Pavia dataset (a) the ground 
truth, (b) RF, (c) SVM, (d) MLP, (e) 3DCNN, (f) PyResnet, (g) ADGAN, (h) SpectralFormer, (i) GCN, (j) 
DHCGAN.
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randomly selected 400 samples of this dataset as training samples in the experiment, 
which is equivalent to the training proportion of 0.1%. These are the reasons for the poor 
accuracy on WHU_Hi_HanChuan dataset. In the case of few training samples, the pro
posed DHCGAN method also achieves the highest OA, AA and kappa values. As shown in 
Table 9, compared with ADGAN, DHCGAN ‘s OA value increased by 4.54%, kappa value 
increased by 5.45%, and AA value even increased by more than 8%. There are too few 
samples in several classes in WHU-Hi-HanChuan dataset, resulting in too large differences 
in classification results between classes. For example, on Water spinach, Watermelon, 
Grass and Plastic classes, RF is all misclassified. The classification accuracy of other 
methods in these classes is also less than 80%. However, the proposed DHCGAN achieved 
the highest value in 11 land-cover categories (16 classes in total), and even achieved the 
OA value of 98.74% on Water class. Figure 10 shows the classification map visualization 
results of seven competitive methods on the WHU-Hi-HanChuan dataset. As can be seen 
from (b), (d), (e) and (g) of Figure 10, the RF, MLP, 3DCNN and ADGAN methods misclassify 
many samples belonging to Plastic class to Bare Soil class. Compared with them, the 
classification effect of PyResNet and the proposed DHCGAN on plastic class is better.

4) Classification results on the Houston dataset: For the Houston dataset, 800 samples 
are randomly selected as the training set, and the other samples are used for testing. 
Table 10 shows the three evaluation indicators (OA, AA and kappa) and the accuracy of 
each class with different competitive methods on the Houston dataset. It can be seen 
from Table 10, the proposed DHCGAN achieved the highest result of OA, AA and kappa. 
Among them, the OAs of DHCGAN are 4.73%, 3.01%, 5.55%, 1.28%, 0.19%, 1.37%, 5.4% 
and 1.95% higher than that of the competitive methods respectively. Compared with 
other methods, DHCGAN achieved the best accuracy on ten classes (15 classes in total) of 

Table 9. Classification results of different methods on WHU-Hi-HanChuan dataset.
Color Class RF SVM MLP 3DCNN PyResNet ADGAN SpectralFormer GCN DHCGAN

1 84.91 77.42 86.87 89.90 68.25 88.05 85.55 85.81 90.29

2 50.57 44.71 70.98 72.01 71.01 73.24 57.98 60.46 73.95

3 17.28 39.67 39.24 60.61 79.54 72.86 60.31 67.03 80.45

4 48.30 60.55 80.64 82.43 77.10 88.97 83.56 83.86 90.67

5 0.0 13.42 19.60 53.51 55.16 49.03 12.46 22.56 43.39

6 0.0 12.37 45.68 46.80 69.05 68.51 20.76 43.42 71.73

7 52.34 51.76 37.28 73.94 71.79 76.82 65.24 63.89 64.55

8 40.19 55.86 76.77 70.05 87.78 85.18 67.21 68.67 81.21

9 0.0 32.19 72.60 56.54 40.74 78.79 54.68 60.14 79.42

10 72.87 83.07 78.93 74.71 86.69 77.90 94.32 94.59 88.86

11 41.31 74.22 76.04 82.05 90.12 87.11 86.10 90.58 92.50

12 0.0 24.07 25.33 54.09 66.04 72.54 43.22 20.99 73.24

13 35.03 40.11 31.14 49.55 36.48 46.51 46.59 49.12 53.34

14 71.18 70.89 63.21 80.20 76.90 79.61 79.30 83.02 80.90

15 66.67 33.57 81.12 71.55 72.50 73.02 95.95 86.43 70.25

16 86.87 95.47 90.12 86.17 81.34 98.64 97.99 96.41 98.74

OA(%) 68.98 70.71 73.08 78.60 81.89 81.34 79.84 81.13 85.88

AA(%) 41.72 50.58 60.97 69.01 70.66 68.67 65.70 67.33 77.09

Kappa(%) 62.89 65.45 68.19 74.59 81.87 78.01 76.33 77.85 83.46
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Figure 10. Visual classification maps of different methods on WHU-Hi-HanChuan dataset (a) the 
ground truth, (b) RF, (c) SVM, (d) MLP, (e) 3DCNN, (f) PyResnet, (g) ADGAN, (h) SpectralFormer, (i) GCN, 
(j) DHCGAN.

Table 10. Classification results of different methods on Houston dataset.
Color Class RF SVM MLP 3DCNN PyResNet ADGAN SpectralFormer GCN DHCGAN

1 96.48 95.98 94.32 96.33 95.66 94.96 93.07 97.37 98.72

2 98.24 96.97 97.05 98.09 97.36 87.08 92.07 98.18 98.64

3 99.24 99.56 99.70 99.62 99.80 99.13 94.18 98.62 100.0

4 96.54 97.93 95.53 98.02 95.75 91.88 95.56 97.10 94.69

5 93.07 95.57 91.53 96.64 99.17 96.37 96.00 95.68 99.91

6 90.10 99.53 93.85 99.31 92.04 99.69 87.62 100.0 74.30

7 87.15 88.55 75.90 92.14 95.75 80.44 88.98 92.14 81.74

8 81.20 84.14 83.42 84.88 90.83 91.07 80.47 85.30 82.20

9 88.07 82.55 85.50 85.27 92.22 55.51 84.47 84.72 97.69

10 85.72 86.82 82.53 89.07 89.94 97.63 79.63 90.56 99.18

11 83.63 87.93 86.75 92.89 93.53 93.19 89.1 88.24 94.57

12 80.81 84.28 57.50 86.51 87.63 95.62 82.88 84.38 98.21

13 74.85 76.39 87.58 78.57 94.56 77.18 85.90 71.59 72.28

14 90.47 97.28 99.52 97.31 97.06 100.0 91.50 97.77 100.0

15 99.19 99.37 82.92 98.20 98.35 100.0 95.02 99.50 100.0

OA(%) 89.21 90.93 88.39 92.66 93.75 92.57 88.54 91.99 93.94

AA(%) 89.71 91.52 88.14 92.86 94.64 91.73 89.10 92.08 95.05

Kappa(%) 88.33 90.19 87.45 92.06 93.46 90.53 87.59 91.34 96.20
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the Houston dataset. The OA of PyResNet, which is more efficient for feature extraction, is 
slightly lower than that of the proposed method, and higher than that of others. For GAN 
models, the proposed DHCGAN not only generates high-quality samples, but also extracts 
features more effectively, so its OA is higher than that of PyResNet. The visual classification 
results of different competitive methods are shown in Figure 11.

4.4. Visualization of generated samples

Table 11 shows the OA values obtained by generators with different convolution strate
gies on four datasets. The generated samples visualization of different convolution 
strategies under different training epoch are shown in Figure 12. As can be seen from 
Table 11, compared with the deconvolution strategy used only in the generator, the 
strategy combining nearest neighbour upsampling and sub-pixel convolution is 0.5% 
higher on the four datasets. It can also be seen from Figure 12(a) that during the training 
process, only using deconvolution presents more or less chequerboard artefacts. The 
hybrid convolution strategy not only suppresses the chequerboard artefacts, alleviates 
the overlap of convolution domains, but also improves the classification performance.

Figure 11. Visual classification maps of different methods on Houston dataset (a) the ground truth, (b) 
RF, (c) SVM, (d) MLP, (e) 3DCNN, (f) PyResnet, (g) ADGAN, (h) SpectralFormer, (i) GCN, (j) DHCGAN.

Table 11. OA (%) on four datasets with different convolution strategies applied to generator G.
Datasets 

Strategy Indian Pines University of Pavia WHU-Hi-HanChuan Houston

With hybridconv 96.78 96.55 85.88 93.94
With onlydeconv 96.21 96.09 85.11 91.84
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4.5. Efficiency analysis of input image size

Usually, we classify the target pixel and its spatial neighbours into the same class. 
Therefore, the patch size of the input image is an important parameter that affects the 
classification performance. If this value is too small, it may lead to ineffective utilization of 
spatial information and reduce the classification ability. If it is too large, pixels of different 
categories may be mixed in the patch area, which is not conducive to the final classifica
tion. Figure 13 shows the OA values of four datasets with different input image patch 
sizes, which are set from 15 to 31 with an interval of 4. As can be seen from Figure 13, with 
the increase of the input image patch, the OA values obtained on the Indian pins, 
University of Pavia, Houston and WHU-Hi-HanChuan datasets are also increasing. When 

80 84 88 92 96 100

Indian Pines
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WHU-Hi-HanChuan

Houston

OA(%)

Da
tas

ets

with both with dilatedconv with adaptivedrop with none

Figure 13. Impact of input image patch size on classification performance.

(a)

(b)

Figure 12. Generated samples visualization of different epochs (from left to right: 200 400 600 800) (a) 
with only deconv (b) with hybridconv.
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the input image patch value is 27, the maximum values are obtained, which are 96.78%, 
96.55% and 85.88% respectively. Subsequently, the OA value at 31 is slightly lower than 
that at 27. Therefore, the input image patch size used in this paper is 27, and the proposed 
method has the best classification performance on each dataset.

4.6. Comparison of running time

In addition to the three commonly used evaluation indicators, running time is also an 
important index to measure the performance of classification model. Table 12 shows the 
test time of seven algorithms on four datasets. Due to the complexity of deep learning 
framework, MLP, 3DCNN, PyResNet, ADGAN, SpectralFormer, GCN and the proposed 
methods take longer running time than traditional machine learning methods (including 
RF and SVM). MLP has fewer layers, so its running time is less than other deep learning 
models. Also based on the CNN model, the PyResNet algorithm has deep network layers 
and high computational complexity, which causes it to take longer time than the 3DCNN 
model. GAN-based models (including ADGAN and the proposed DHCGAN) are essentially 
two sub-networks in alternating iterative training, so they take the longest time. Although 
the proposed DHCGAN runs long on Indian pines and WHU-Hi-HanChuan datasets, 
DHCGAN on the four datasets shows the best classification performance.

4.7. Ablation experiment

As previously mentioned, the proposed DHCGAN utilizes adaptive drop layers with 
attention thought to alleviate the mode collapse problem of GAN. In addition, the dilated 
convolution is placed in the discriminator, and the feature discrimination ability of the 
discriminator can be enhanced by setting different dilation rates in different convolution 
layers. Thus, we did some ablation experiments using a generator with a combination of 
nearest neighbour upsampling and sub-pixel convolutions and a discriminator containing 
only traditional convolutions as the basic GAN model. Figure 14 shows the classification 
accuracy obtained by different strategies on four datasets.

As can be seen from Figure 14, after only the adaptive drop layer is added to the basic 
model, the OA value of each dataset has a slight increase. Nevertheless, after only 
replacing a set of dilated convolutions on the basic model, the OA value of each dataset 
has been greatly improved, indicating that the dilated convolution improves the feature 
discrimination ability of the discriminator and has an obvious impact on the final classi
fication effect. Obviously, combining the advantages of both (adaptive drop layer and 

Table 12. Running time of different methods on four datasets (s).
methods 

datasets RF SVM MLP 3DCNN PyResNet ADGAN SpectralFormer GCN DHCGAN

Indian pines 4.1 9.4 8.9 65.7 320.3 406.3 55.4 8.9 439.6
University of Pavia 6.8 24.3 15.5 268.1 530.5 518.5 131.1 20.2 500.1
WHU-Hi-HanChuan 62.6 276.6 227.2 1120.9 3643.3 3250.9 1342.0 213.4 3419.3
Houston 10.1 23.6 19.0 96.8 187.9 2386.9 55.9 111.2 2381.3
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dilated convolution), the classification performance of the model composed of the two 
(i.e. the proposed DHCGAN) is the best.

4.8. Efficiency analysis of the number of training samples

The OA results of the seven methods under different numbers of training samples are 
shown in Figure 15. In the Indian pines dataset, 300, 500 and 1000 samples were randomly 
selected for training. For the University of Pavia dataset, 500, 1000 and 2000 samples were 
randomly selected as training samples. For the WHU-Hi-HanChuan dataset, the number of 
training samples was randomly set to 200, 400 and 800 respectively. And 450, 800, 1500 
samples are randomly selected from the Houston dataset as the training set to verify 
Experiments indicate that the proposed DHCGAN shows the best performance compared 
with RF, SVM, MLP, 3DCNN, PyResNet, SpectralFormer, GCN and ADGAN. The framework 
based on deep learning outperform RF and SVM for classification. With the increase of the 
number of training samples, the performance of all methods improves, and the proposed 
DHCGAN obtains higher OA value than other algorithms. Therefore, even under a limited 
number of training samples, the proposed DHCGAN can show satisfactory and stable 
performance.

5. Conclusions

In this paper, we propose a novel GAN model for HSI classification – DHCGAN. DHCGAN is 
divided into two sub-networks. In the generator of DHCGAN, the effective combination of 
nearest neighbour upsampling and sub-pixel convolution is used to generate high-quality 
fake samples as an input of the discriminator. Due to the slow convergence speed of GAN, 
and too many network layers will lead to a large increase in computational complexity. By 
introducing dilated convolution in the discriminator, and the effective hybrid of 
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Figure 14. OA (%) of different strategies on four datasets.
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traditional convolution and dilated convolution is used to realize more effective feature 
extraction. In addition, the adaptive drop layer and batch normalization layer are 
embedded into the generator and discriminator to further optimize GAN. Experiments 
on four datasets demonstrate that the proposed method outperforms the state-of-the-art 
GAN model in classification, which proves the effectiveness of DHCGAN.
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